
Bridging the Gap Between COTS Product Reuse and Formal Methods: A Case Study

Edward A. Addy
NASA/WVU Software Research Laboratory
100 University Drive
Fairmont, WV 26554
eaddy@wvu.edu

Murali Sitaraman
Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV 2650-6109
murali@csee.wvu.edu

Abstract
Reusable commercial off-the-shelf (COTS)
products are routinely employed in development
of software systems. However, no systematic
techniques are available for specification or
verification of critical aspects of such systems.
This paper explains that the dependencies
between a critical subsystem and a COTS
product can be isolated through formally-stated
mathematical and programmatic interface
contracts. The contracts allow specification and
reasoning of critical subsystems, without a need
to describe entire COTS product functionality
formally. They also provide the flexibility of
using alternative COTS products that include the
desired behavior.

The paper illustrates elements of the proposed
approach using a subsystem of the NASA/FAA
Surface Movement Advisor (SMA). This case
study is based on a COTS database.

1. Introduction

Developers of large software systems are turning
increasingly to the use of commercial software
developed by third parties [Voas 98a, Weyuker
98]. Use of COTS1 software as a large-grain
component of a new system allows the
developer to reduce time to market and to reduce
system development costs. COTS software is
almost always delivered in executable form and
rarely is there direct access to the requirements

1 The terms COTS and commercial software are used
to reference software developed by a third party.
Much of the discussion in this paper also applies to
any software previously developed outside the
application development environment, including
legacy and public domain software, and other non-
developmental items.

or design documentation. When COTS software
is employed in life-critical, mission-critical, or
in any system with significant financial
liabilities, it is essential to ensure that the
integrated system is reliable.

Typically, it is neither possible nor feasible to
develop complete and formal descriptions of
behaviors of COTS products. But unless the
behaviors are described formally, it is not
possible to use rigorous techniques for
specification or reasoning of COTS-based
safety-critical systems. The contributions of this
paper are in addressing this dilemma. It
describes a solution that is based on complete
specification of partial functionality of COTS
products, and illustrates the solution approach
using a realistic case study.

This paper explains that a fundamental issue to
be tackled in using a COTS product is the
specification of the safety-critical subsystem.
To the extent required in mathematical modeling
and specification of the critical subsystem,
features of the COTS product need to be
modeled mathematically and described in
mathematical interface contract(s). To perform
formal reasoning or rigorous validation of the
implementation of the COTS-based subsystem,
programmatic interface contract(s) or
specification of the commercial product or
legacy system is necessary. The interface
contracts isolate and precisely describe those
aspects of the COTS product that affect the
application system. In addition to enabling
unambiguous, understanding and formal
reasoning, precise descriptions of the interfaces
also guide the testing that must be performed on
the COTS product and integration testing.

Bridging the Gap Between COTS Product Reuse and Formal Methods 2

The case study, on which this paper is based,
concerns a subsystem of the Surface Movement
Advisor (SMA) system, a joint Federal Aviation
Administration (FAA) and National Aeronautics
and Space Administration (NASA) effort [SMA
95]. The objective of the SMA is to assist air-
traffic controllers in the area of ground
movement control. SMA uses a COTS database
product, among others. Our experience in
specifying and implementing a subsystem of
SMA demonstrates that mathematical modeling
of realistic software subsystems is possible, even
in the presence of significant COTS software
usage.

The rest of the paper is organized into the
following sections. Section 2 of the paper
contains a brief overview of the SMA. Section 3
contains a formal specification of an SMA
subsystem, based on a partial mathematical
modeling of the COTS product behavior.
Section 4 outlines a component-based
implementation of the subsystem. It contains
partial programmatic interface contracts for
isolating COTS product interaction. Section 5
summarizes related work, status of the case
study, and our conclusions.

2. Surface Movement Advisor

SMA is a proof-of-concept prototype
demonstration to test the implementation of
advanced information systems technologies to
improve coordination and planning of ground
airport-traffic operations. SMA is primarily a
data fusion and dissemination system,
integrating airline schedules, gate information,
flight plans, radar feeds and runway
configuration (including departure split and
landing direction). This integrated information
is shared among airport ramp operators,
managers, airline operators, and FAA controllers
and supervisors. As a prototype system, SMA
currently is targeted for the Atlanta Hartsfield
International Airport. Following a successful
demonstration, the system will be modified for
installation at other major airports.

The subsystem of SMA considered in this paper
deals with prediction of the times of key events
for flights. This subsystem is responsible for
determining the most likely time for flight
events such as time of pushback from the gate,
takeoff time, landing time, and gate arrival time.

The case study is a shadow development effort,
based on the SMA Systems Requirements
Document, Build 1, of SMA [SMA 95]. The
focus of the study is the “departure part” of the
prediction subsystem that is concerned with
predicting flight takeoff times. All departing
flights leave the airspace surrounding an airport
through one of several designated points, called
Departure Gate Areas (DGAs). The DGAs can
be conceived as horizontal tunnels in the sky
through which the flight must pass. The DGA
that a flight will use is determined by the
destination of the flight.

Each airport has a set of standard configurations
or “splits”, that determines the runway that a
flight will use based on the DGA of the flight.
The airport has a number of pre-defined splits,
but splits may also be created on an ad-hoc
basis. The DGAs and some of the pre-defined
splits at Atlanta Hartsfield International Airport
are depicted in Figure 1. A key goal of the air-
traffic controller is to minimize the time that the
planes spend after pushback waiting to take off.
This is done by attempting to keep the runways
balanced in terms of utilization.

To make predictions on flight departures, SMA
needs access to a large amount of flight and
airline information. This information is
managed using an Oracle database, a COTS
product. The database contains (among other
information) the scheduled, predicted, and actual
pushback time for each flight, the call number
for the plane, the aircraft type, the boarding gate,
and the DGA the flight will use. The users can
display the cumulative wait times for each
runway, one split at a time, or can display a
graphical comparison of all the splits. (The
display can show the cumulative wait times for
any window between 15 and 60 minutes,
beginning at the current time.)

Bridging the Gap Between COTS Product Reuse and Formal Methods 3

3. Formal Specification of the Flight Takeoff
Prediction Subsystem

The Prediction Subsystem is responsible for
calculating the cumulative wait times and the
predicted takeoff time for each flight, given the
runway, the split to be used, and the time
window. The focus of the problem is predicting
the time of takeoff for a flight, taking into
account the time the flight pushes back from the
gate and considering other flights that might
impact the time of takeoff.

An object-based specification for the takeoff
time prediction subsystem, named
Simulate_Runway_Machine_Template, is
shown in RESOLVE notation [Sitaraman 94] in
Figure 2. Other formal notations, such as Larch,
VDM, or Z, summarized in [Wing 90] could
have been used equally well.

Simulate_Runway_Machine_Template provides
a prediction simulation type, and operations to
manipulate objects of the type. It is a result of
“recasting” the prediction algorithm as an object.
The idea of recasting graph and simulation
algorithms as object-based machines, and the
performance and software engineering benefits
of the idea are discussed elsewhere [Weide 94a].

The RESOLVE concept or specification in
Figure 2 contains a context section showing a
list of “imports” and an interface section of
“exports”. In the figure, the global context
imports Standard_Partial_SMA_Departure_
Database_ Facility, because the current
specification relies on the mathematical
modeling of database attributes described in that
module. The local context contains
mathematical definitions or math operations
(explained later) that make it possible to write
assertions in the interface section concisely.

SPLIT NW/SE NWE1/SE2 NE/SW N/SWE
DGAs using the north
runway

N1, N2, W1, W2 N1, N2, W1, W2, E1 N1, N2, E1, E2 N1, N2

DGAs using the south
runway

S1, S2, E1, E2 S1, S2, E2 S1, S2, W1, W2 S1, S2, W1, W2, E1, E2

Figure 1. Departure Gate Areas and Several Predefined Splits for Atlanta Hartsfield International Airport
(conceptual drawing, not to scale)

Bridging the Gap Between COTS Product Reuse and Formal Methods 4

Figure 2: Flight Departure Prediction Concept

concept Simulate_Runway_Machine_Template

 context

 global context

 facility Standard_ Partial_SMA_Departure_
 Database_Facility

 local context

-- mathematical definitions of
-- In_Line, Cumulative_Wait_Time_Def,
-- Safety_Delays_Met, Actual_Takeoff_Times_Used,
-- and Taxi_Times_Met

 math operation Well_Formed_Runway_Queue (
 q: string of FLIGHT_TIME_PAIR,
 sid: SPLIT_ID,
 rid: RUNWAY_NAME,
 db: SMA_DEPARTURE_DB_MODEL) : boolean
 explicit definition
 for all ft: FLIGHT_TIME_PAIR
 where (db.runway_used(ft.f) = rid or
 (db.runway_used(ft.f) = empty_string and
 db.assigned_runway
 (sid,db.departure_gate_area(ft.f)) = rid)
 (In_Line(q, ft.f, db))
 and Safety_Delays_Met(q, rid, db)
 and Actual_Takeoff_Times_Used(q, db)
 and Taxi_Times_Met(q, rid, db)

 math operation Proper_Flights_In_Queue (
 sid: SPLIT_ID,
 rid: RUNWAY_NAME,
 tbegin: DISCRETE_TIME,
 tend: DISCRETE_TIME,
 q: string of FLIGHT_TIME_PAIR,
 db: SMA_DEPARTURE_DB_MODEL) : boolean
 explicit definition
 for all ft: FLIGHT_TIME_PAIR
 where IS_ENTRY_OF(q, ft) (
 tbegin <= ft.t <= tend)
 and
 there exists c: CONFIGURATION,
 q1: string of FLIGHT_TIME_PAIR
 where (db.c.id = sid and
 Well_Formed_Runway_Queue(q1, sid, rid, db)) (
 (Is_Substring (q, q1))

 interface

 type Simulate_Runway_Machine_State is (
 sid: string of character,
 rid: string of character,
 tbegin: DISCRETE_TIME,
 tend: DISCRETE_TIME,
 q: string of FLIGHT_TIME_PAIR,
 ready_to_extract: boolean)
 exemplar m
 constraints
 Is_Allowed_Split_Name (m.sid) and
 Is_Allowed_Runway_Name (m.rid) and
 m.tend >= m.tbegin
 initialization ensures m.ready_to_extract = false

-- operations to set and obtain the values of the
-- split ID, the runway ID, and the beginning and
-- ending times, and an operation to check
-- if the machine is in extraction phase.

 operation Simulate_Runway (
 alters m: Simulate_Runway_Machine_State,
 preserves db: SMA_Database_Machine)
 requires m.ready_to_extract = false
 ensures Proper_Flights_In_Queue
 (m.sid, m.rid, m.tbegin, m.tend, m.q,db)
 and m.sid = #m.sid and m.rid=#m.rid and
 m.tbegin=#m.tbegin and m.tend=#m.tend and
 m.ready_to_extract=true

 operation Extract_Next (
 alters m: Simulate_Runway_Machine_State,
 produces flight_number: Char_String,
 produces takeoff_time: Integer)
 requires |m.q| /= 0 and m.ready_to_extract = true
 ensures #m.q = <flight_number, takeoff_time> * m.q
 and m.sid=#m.sid and m.rid=#m.rid and
 m.tbegin=#m.tbegin and m.tend=#m.tend and
 m.ready_to_extract=#m.ready_to_extract

 operation Cumulative_Wait_Time (
 preserves m: Simulate_Runway_Machine_State,
 preserves db: SMA_Database_Machine,
 produces wait_time: Integer)
 ensures Cumulative_Wait_Time =
 Cumulative_Wait_Time_Def (m.q, m.rid, db)

 operation Queue_Length_Of (
 preserves m: Simulate_Runway_Machine_State,
 produces length: Integer)
 requires m.ready_to_extract = true
 ensures length = |m.q|

end Simulate_Runway_Machine_Template

Bridging the Gap Between COTS Product Reuse and Formal Methods 5

In the interface of this concept, objects of the
type Simulate_Runway_Machine_State are
modeled mathematically as a 6-tuple: sid and
rid, respectively, denote the split identification
and runway identification for which simulation
is to be done. tbegin and tend denote the window
for simulation. The central part of the model is
the q that contains results of the simulation. It is
a string (or sequence) of ordered pairs denoting
which flight is predicted to depart at what time.
The purpose of the boolean ready_to_extract
will become clear in the following discussion.
When it is true, conceptually, results from
simulation are available for extraction. The
specification also states, using an exemplar
object, the constraints and initialization
guarantees on every object of the type. Notice
that initially ready_to_extract boolean is false.

The interface provides following operations on
prediction simulation objects:

• operations to set/get simulation
parameters (split, runway, start time,
and end time);

• an operation to instruct the machine to
simulate;

• an operation to extract the flight number
and time at which the next flight is
predicted to take off ;

• an operation to get cumulative wait time
for the current simulation; and

• status-checking operations to see if the
information on the next flight can be
extracted and if there are any more
flights for take off in the simulated
window.

In a typical use of the object, after simulation
parameters are set, the Simulate_Runway
operation will be called. This operation uses and
preserves the database, but alters the machine
state. It requires that the machine be in the
insertion phase, i.e., m.ready_to_extract boolean
must be false. For the operation to work as
specified in the ensures clause, the requires
clause must hold when it is called.

The conceptual effect of calling the
Simulate_Runway operation is that it ensures
that appropriate string of flights with their actual

or predicted takeoff times are now available in
the prediction simulation queue “m.q”. The
operation also sets the ready_to_extract flag to
true indicating that the simulation results are
available. In the ensures clause, #m denotes the
value of parameter m before the call and m
denotes its value after the call.

The effect of the Simulate_Runway operation
has been specified formally using a
mathematical definition Proper_Flights_In_
Queue. This definition uses another definition
Well_Formed_Runway_Queue that specifies
when a mathematical string (or sequence) of
flight/take-off time pair is a valid simulation,
based on database information such as push back
times, taxi times, and runway delays. The
definition Proper_Flights_In_Queue is
additionally concerned with a given window of
time. Both of these definitions, as well as others
not listed explicitly in the figure, are based on
departure database information. The relevant
database details are contained in db, modeled by
SMA_DEPARTURE_DB_MODEL. Details of
this model are the topic of the next subsection.

The Extract_Next operation requires that the
results be ready for extraction, and it produces
the predicted values of the next flight number
and associated takeoff time.
Cumulative_Wait_Time operation returns the
total wait time of the flights in line (as specified
formally in the mathematical operation
Cumulative_Wait_Time_Def). The Queue_
Length_Of operation returns the number of
flights left in the prediction simulation window
of time.

A Mathematical Interface of COTS database

It is clear that the specification in Figure 2 can
be meaningful only if there is a suitable
mathematical modeling of database information.
The mathematical description of
SMA_DEPARTURE_DB_MODEL should
contain all information relevant for predicting
take-off times, but nothing more. Such a
description is given in the interface of the
mathematics module SMA_Database_Math_
Machinery in RESOLVE notation in Figure 3.

Bridging the Gap Between COTS Product Reuse and Formal Methods 6

Unlike a concept specification, such as the one
in Figure 2, that provides program types and
operations to manipulate programming objects,
the purpose of a mathematics module is to
define mathematical types and definitions useful
for writing specifications. Mathematics modules
are not implemented. They simply establish
formal meanings for domain vocabulary.
(Mathematics modules in RESOLVE are similar
in spirit to Larch traits [Wing 90].)

In Figure 3, SMA_DEPARTURE_DB_MODEL
is defined to be a math subtype. A math
subtype is essentially a base mathematical type
with zero or more constraints on the value space
[Heym 94, Rushby 98]. In the definition of
SMA_DEPARTURE_DB_MODEL, other math
subtypes have been defined and used, though
most of them have not been shown. This
database model consists of a collection of
functions that are needed in the prediction
system. For example, predicted_pushback_time
is a function from the character string
FLIGHT_ID into DISCRETE_TIME. In this
case, the base mathematics type for

DISCRETE_TIME is integer, where the values
are constrained to be non-negative integers.

Some of the information in the database is
particular to the specific airport. This
information has been isolated and specified
separately in another mathematics module
SMA_Database_Airport_Information (not
shown). This module contains information such
as airport-specific gate names, flight
identifications, and standard splits. Isolating the
airport specific information in this one module
enhances the portability of this system.

Together the mathematical modules define
mathematical interface contracts of the COTS
product. For the prediction system, any database
can be used as long as it contains at least the
information corresponding to the mathematical
modeling in Figure 3. The example illustrates
that in general, formal specification of COTS-
based systems may require selected aspects of
the COTS products to be modeled
mathematically and captured formally.

mathematics SMA_Database_Math_Machinery
 context
 global context
 mathematics SMA_Database_Airport_Information
 interface
 math subtype FLIGHT_ID is string of character
 exemplar fid
 constraint Is_Allowed_Flight_ID(fid)

-- similar math subtypes for AIRCRAFT_TYPE_NAME,
-- GATE_NAME, OPTIONAL_GATE_NAME, DGA_NAME,
-- RUNWAY_ID, OPTIONAL_RUNWAY_ID,
-- and SPLIT_ID

 math subtype GATE_RUNWAY_PAIR is (
 g: GATE_NAME,
 r: RUNWAY_ID)

 math subtype CONFIGURATION is (
 sid: SPLIT_ID,
 split: function from DGA_NAME to RUNWAY_ID)

 math subtype FLIGHT_TIME_PAIR is (
 f: FLIGHT_ID,
 t: DISCRETE_TIME)

 math subtype SMA_DEPARTURE_DB_MODEL is (
 aircraft_type: function from FLIGHT_ID to
 AIRCRAFT_TYPE_NAME
 gate: function from FLIGHT_ID to
 OPTIONAL_GATE_NAME
 departure_gate_area: function from FLIGHT_ID to
 DGA_NAME
 runway_used: function from FLIGHT_ID to
 OPTIONAL_RUNWAY_ID
 predicted_pushback_time: function from FLIGHT_ID
 to DISCRETE_TIME
 actual_pushback_time: function from FLIGHT_ID to
 OPTIONAL_DISCRETE_TIME
 actual_takeoff_time: function from FLIGHT_ID to
 OPTIONAL_DISCRETE_TIME
 delay_time: function from AIRCRAFT_TYPE_NAME
 to DISCRETE_TIME
 roll_time: function from AIRCRAFT_TYPE_NAME
 to DISCRETE_TIME
 taxi_time: function from GATE_RUNWAY_PAIR to
 DISCRETE_TIME
 configuration: set of CONFIGURATION)

 end SMA_Database_Math_Machinery

Figure 3: Mathematical Modeling of Database Information

Bridging the Gap Between COTS Product Reuse and Formal Methods 7

4. COTS-Based Implementation and Modular
Reasoning of the Subsystem

This section describes a component-based
implementation of the prediction subsystem. To
be able to reason in a modular fashion about a
COTS-based implementation, it is essential to
have a programmatic interface contract(s) for
the COTS product. This is the topic of this
section.

In modular reasoning it is possible to ensure that
a component implementation satisfies its
specification, based only on the specifications of
reused components [Ernst 90, Leavens 91,
Weide 94b]. Figure 4 provides an illustration to
explain the basic idea. In the figure, an oval
represents the specification of a component,
whereas a rectangle represents an
implementation. A thin arrow labeled “i”
indicates an implements relationship and a thick
arrow labeled “u” indicates a uses relationship.

To verify that the implementation in the figure
satisfies its specification, only the specifications
of reused components, numbered 1, 2, and 3 are

needed. No knowledge of the rest of the system
in which the component will be used is
necessary and no knowledge of details of
implementations of reusable components is
necessary. Modular reasoning essentially makes
it possible to reason about one implementation at
a time, and is therefore, scalable. This basic
idea is independent of whether the reasoning
process is formal or informal, automated or
manual.

Figure 5 contains a COTS-based implementation
of the flight departure prediction subsystem.
The implementation uses the specification of a
part of the COTS database (as well as other
supporting specifications). In the figure, the
database interface has been separated into two
concepts, one that specifies basic database
retrieval operations and another that specifies a
highly application-specific extensive database
query. These interfaces need to be implemented
using COTS software and they serve as the
programmatic contract between the prediction
subsystem and COTS database. (Mathematics
modules are not shown in Figure 5.)

Figure 4: Illustration to Explain Modular Reasoning

Component
Specification

Component
Implementation

Component_2
Specification

u
u

u

i

Component_1
Specification

Component_3
Specification

Bridging the Gap Between COTS Product Reuse and Formal Methods 8

Figures 6 and 7 contain programmatic database
interface contracts (or specifications) for
Partial_SMA_Departure_Database_Template
and SMA_Database_Flight_Finder_Template.

Partial_SMA_Departure_Database_Template is
shown in Figure 6. This programmatic interface
depends on the mathematical interface shown in
Figure 3 in the previous section. The global
context explains this linkage by referring to
SMA_Database_Math_Machinery In the
interface section, the Database object is modeled
by SMA_DEPARTURE_ DB_MODEL (from
Figure 3). The operations specify basic retrieval
operations of the database.

The other part of the Database interface,
SMA_Database_Flight_Finder_Template, is
shown in Figure 7. This interface specifies an
extended database query, Select_Flights_To_

Runway, for simulating the runway. The query
locates all flights that either have used the
specified runway or will use the runway based
on the specified split, and orders them by takeoff
time (if they have already departed) or time of
pushback from the gate (actual pushback times
followed by predicted pushback times). The
exported type is the conceptual value of the
result of this selection query. The other two
operations are used to return the next flight ID
from the ordered selection, and to check on the
number of flights remaining from the selection.

Together, the interfaces in Figures 6 and 7
accurately capture programmatic aspects of the
COTS product, relevant to the SMA departure
prediction subsystem.

Simulate_Runway_
Machine_Template

COTS_Based_
Realization

Ideal COTS “Specification”

COTS
Product

Supporting
Component

Specification . . .

u u u

i

i

Partial_SMA_Departure_
Database_Template Flight_Finder_Template

u

COTS_Based_
Realization

COTS_Based_
Realization

i
i

u u

Supporting
Component
Realization

u

Figure 5: Modular Reasoning for the SMA Flight Departure Prediction Algorithm

Bridging the Gap Between COTS Product Reuse and Formal Methods 9

5. Discussion

Status

The specification for the SMA subsystem has
been implemented in RESOLVE/C++.

[Hollingsworth 94] The implementations of the
database concepts depend on the particular
database product and its structure, and consist
primarily of Structured Query Language (SQL)
queries.

concept Partial_SMA_Departure_ Database_Template

 context global context

 mathematics SMA_Database_Math_Machinery

 interface
 type SMA_Database is modeled by
 SMA_DEPARTURE_DB_MODEL
 exemplar db

 operation Aircraft_Type (
 preserves db: SMA_Database_Machine,
 preserves fid: Char_String): Char_String
 requires Is_Allowed_Flight_ID (fid)
 ensures db.aircraft_type(fid) = Aircraft_Type

 operation Taxi_Time (
 preserves db: SMA_Database_Machine,
 preserves gid: Char_String,
 preserves rid: Char_String): Integer
 requires Is_Allowed_Flight_ID (fid)
 and Is_Allowed_Gate_Name (gid)
 ensures db.taxi_time ((gid, rid)) = Taxi_Time

-- similar operations to obtain the Gate, Runway_Used,
-- Departure_Gate_Area, Predicted_Pushback_Time,
-- Actual_Pushback_Time, and Actual_Takeoff_Time
 -- associated with a flight ID; the Delay_Time and
-- Roll_Time associated with an aircraft type; and the
-- Assigned_Runway associated with a split and DGA

end Partial_SMA_Departure_Database_Template

Figure 6: Database Interface Contract (part 1)

concept SMA_Database_Flight_Finder_Template

 context

 global context

 facility Standard_ Partial_SMA_Departure_
 Database_Facility

 local context
 math operation
 All_Flights_To_Runway_In_Pushback_Order (
 q: string of FLIGHT_ID,
 sid: SPLIT_NAME,
 rid: RUNWAY_NAME,
 db: SMA_DATABASE_MACHINE): boolean
 explicit definition
 all the flights that have taken off from the specified
 runway or that are assigned to the specified runway
 by the split are in the string, and the flights are in
 order of (by precedent)
 (1) actual takeoff time (if the flight has taken off),
 (2) actual pushback time
 (if the flight has pushed back from the gate but
 has not taken off),
 (3) predicted pushback time
 (if the flight has not pushed back from the gate).

 interface
 type Flight_Finder_State is modeled by (
 q: string of FLIGHT_ID)
 exemplar ff
 initialization ensures |ff.q| = 0

 operation Select_Flights_To_Runway (
 alters ff: Flight_Finder_State,
 preserves sid: Char_String,
 preserves rid: Char_String,
 preserves db: SMA_Database_Machine)
 requires Is_Allowed_Split_Name (sid) and
 Is_Allowed_Runway_Name (rid)
 ensures
 All_Flights_To_Runway_In_Pushback_Order
 (ff.q, sid, rid, db)

 operation Get_Next_Flight_To_Runway (
 alters ff: Flight_Finder_State,
 produces fid: Char_String)
 requires |ff.q| > 0
 ensures #ff.q = <fid> * ff.q

 operation Number_Of_Flights_To_Runway (
 preserves ff: Flight_Finder_State,) : Integer
 ensures Number_Of_Flights_To_Runway = |ff.q|

end SMA_DB_Departure_Get_Flights_Template

Figure 7: Database Interface Contract (part 2)

Bridging the Gap Between COTS Product Reuse and Formal Methods 10

The shadow development effort, on which this
case study is based, uses an mSQL database
rather than the Oracle database that is used by
the developer. The implementations for an
mSQL database have substantial differences
from implementations using Oracle, but each
implementation should meet the mathematical
and programmatic interface contracts. A change
in the choice of the underlying COTS database
affects only the implementations of the database
interface concepts. No other specifications or
implementations will be impacted by changing
the COTS package, or by changing the physical
storage within the database instance.

A separate part of the application instantiates
Simulate_Runway_Machine_Template, sets the
runway, split, and times, and then obtains
cumulative wait time for the runway and the
predicted takeoff times for the flights. This part
of the software is responsible for storing the data
as necessary in the database and for displaying
the data (hence there are no operations in these
concepts to store or display data). The concepts
and implementations are suitable for any airport.
The only changes are relegated to an airport-
specific data module.

Related Work

While there is much work on developing COTS-
based software and formal methods in the reuse
community, few concrete efforts to bridge the
gaps exist. A significant part of COTS work is
on evaluation, although there is no accepted
standard of evaluation [Carney 97, FAA 96] and
much of the evaluation consists of comparing
likely COTS candidates [Oberndorf 97]. COTS
evaluation extends well beyond the functional
evaluation of the current version of the COTS
product, and includes such issues as training
available on the product, stability of the vendor,
and sustaining engineering support. [Parra 97]
Formal methods transition techniques in
supporting component certification [Leavens
98], component selection [Chen 97], and
component modification [Jeng 94], but none of
these efforts address COTS software.

The National Product Line Asset Center
(NPLACE) has established a method of

evaluating COTS products against a set of
predefined testable criteria. Voas has developed
a method for COTS certification that involves
testing the product based on the operational
profile of the system, system-level fault
injection, and operational system testing. [Voas
98b] Voas also advocates taking defensive
measures by putting a wrapper around the COTS
software to limit the output of the COTS
software to acceptable values. However,
[Weyuker 98] discusses many difficulties in
effectively testing components that are being
used to construct a system, either as individual
components or within the developed system.
[Leach 97] suggests that the best approach may
be to locate a COTS vendor that can be trusted,
and attempt to match the interface specifications.

The specifications of database interface concepts
in this paper serve as a guide to testing the
COTS product. They can be used to generate
test cases to provide assurance that the COTS
product satisfies the specifications. This
approach limits testing on the COTS product to
those features of the COTS product that are
actually used in the application being developed,
rather than attempting to test all features of the
COTS product.

Conclusions

This paper illustrates using a case study how
formal methods can be applied to COTS-based
software. Using a realistic case study, it
illustrates the issues in specification and
implementation of a safety-critical subsystem.
The approach allows developing mathematical
and programmatic interface contracts for only
selected aspects of the system.

The interface contracts isolate the system under
development from the COTS software. Changes
and improvements to COTS software products
have no impact on the system; where there is an
impact it is seen through the interfaces. The
interface contracts facilitate formal reasoning
and also serve as a guide to the test process to
validate the use of the COTS software.

Bridging the Gap Between COTS Product Reuse and Formal Methods 11

Acknowledgements

We are pleased to thank the members of the
Reusable Software Research Group at the West
Virginia University for numerous discussions
relating to the topics of this paper. We are also
pleased to acknowledge our financial sponsors:
DARPA grant DAAH04-96-1-0419, monitored
by the U. S. Army Research Office and NASA
Cooperative Agreement NCC 2-979 at the
NASA/Ames IV&V Facility in Fairmont, WV.

References

[Carney 97] David Carney and Patricia
Oberndorf, “The Commandments of COTS: Still
in Search of the Promised Land,” Crosstalk, Vol
10, No 3, May 1997.

[Chen 97] Yonghao Chen and Betty H. C.
Cheng, “Formalizing and Automating
Component Reuse,” Proceedings of the 9th

International Conference on Tools with AI,
IEEE, November 1997.

[Ernst 90] Ernst, G. W., Hookway, R. J., Menegay,
J. A., and Ogden, W. F., “Modular Verification of
Ada Generics”, Computer languages 16, 3/4, 1991,
pp. 259-280.

 [FAA 96] “Use of COTS/NDI in Safety-Critical
Systems,” Challenge 200 Subcommittee of the
FAA Research, Engineering, and Development
Advisory Committee, February 1996.

[Heym 94] Wayne Heym, et. al., Mathematical
Foundations and Notation of RESOLVE,
Technical Report OSU-CISRC-8/94/TR45,
revised September 1998, Department of
Computer and Information Science, The Ohio
State University, Columbus, OH.

[Hollingsworth 94] Joseph E. Hollingsworth, et.
al., “RESOLVE Components in Ada and C++,”
Software Engineering Notes, Vol 19, No 4,
October 1994.

[Jeng 94] Jun-Jeng and Betty H. C. Cheng, “A
Formal Approach to Reusing More General
Components,” Proceedings of the 9th

Knowledge-Based Software Engineering
Conference, IEEE, September 1994

 [Leach 97] Ronald J. Leach, Software Reuse,
McGraw-Hill, New York, 1997.

[Leavens 91] Leavens, G., “Modular
Specification and Verification of Object-
Oriented Programs”, IEEE Software, Vol. 8, No.
4, July 1991, pp. 72-80.

[Leavens 98] Gary T. Leavens, Oscar Nierstrasz,
and Murali Sitaraman, “1997 Workshop on
Foundations of Component-Based Systems,”
Software Engineering Notes, Vol 23, No 1,
January 1998.

[Oberndorf 97] Patricia A. Oberndorf, et. al.,
Workshop on COTS-Based Systems, Software
Engineering Institute, CMU/SEI-97-SR-109,
November 1997.

[Parra 97] Amalia Parra, et. al., “Packaged-
Based Development Process in the FDD,”
Proceedings of the Software Engineering
Workshop, NASA/Goddard Space Flight Center,
December 1997.

[Rushby 98] John Rushby, Sam Owre, and N.
Shankar, “Subtypes for Specifications: Predicate
Subtyping in PVS,” IEEE Transactions on
Software Engineering, Vol 24, No 9, September
1998.

[SMA 95] Surface Movement Advisor Build 1
System Requirements Document, SMA-110,
National Aeronautics and Space Administration,
Ames Research Center, June 1995.

[Sitaraman 94] Murali Sitaraman and Bruce
Weide, “Component-Based Software using
RESOLVE,” Software Engineering Notes, Vol
19, No 4, October 1994.

[Voas 98a] Jeffrey M. Voas, “The Challenges of
Using COTS Software in Component-Based
Development,” IEEE Computer, Vol 31, No 6,
June 1998.

Bridging the Gap Between COTS Product Reuse and Formal Methods 12

[Voas 98b] Jeffrey M. Voas, “Certifying Off-
the-Shelf Components,” IEEE Computer, Vol
31, No 6, June 1998.

[Weide 94a] Bruce W. Weide, William F.
Ogden, and Murali Sitaraman, “Recasting
Algorithms to Encourage Reuse,” IEEE
Software, Vol 11, No 5, September 1994.

 [Weide 94b] Weide and Hollingsworth, On
Local Certifiability of Software Components,
Technical Report OSU-CISRC-1/94-TR04,

Dept. of Computer and Information Science,
The Ohio State University, 1994.

 [Weyuker 98] Elaine J. Weyuker, “Testing
Component-Based Software: A Cautionary
Tale,” IEEE Software, Vol 15, No 5,
September/October 1998.

[Wing 90] Wing, J. M., “A Specifier's
Introduction to Formal Methods”, IEEE
Computer, 29(9), September 1990, 8-24.

